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Abstract: Designing proteins with novel protein/protein binding properties can be achieved by combining the tools
that have been developed independently for protein docking and protein design. We describe here the sequence-
independent generation of protein dimer orientations by protein docking for use as scaffolds in protein sequence design
algorithms. To dock monomers into sequence-independent dimer conformations, we use a reduced representation in
which the side chains are approximated by spheres with atomic radii derived from known C2 symmetry-related
homodimers. The interfaces of C2-related homodimers are usually more hydrophobic and protein core-like than the
interfaces of heterodimers; we parameterize the radii for docking against this feature to capture and recreate the spatial
characteristics of a hydrophobic interface. A fast Fourier transform-based geometric recognition algorithm is used for
docking the reduced representation protein models. The resulting docking algorithm successfully predicted the wild-type
homodimer orientations in 65 out of 121 dimer test cases. The success rate increases to ~70% for the subset of
molecules with large surface area burial in the interface relative to their chain length. Forty-five of the predictions
exhibited less than 1 A C, RMSD compared to the native X-ray structures. The reduced protein representation therefore
appears to be a reasonable approximation and can be used to position protein backbones in plausible orientations for
homodimer design.
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Introduction

Computational protein design using discrete rotamer packing
methods has been used to create proteins with novel properties,
including enhanced thermostability, catalytic activity, and the abil-
ity to bind small-molecules such as TNT.'™ In a few cases where
the structures of protein/protein dimers are known, protein design
methods have been applied successfully to alter binding specific-
ities and to create chimeras with novel functions.®~® A prominant
goal of protein/protein complex design is to create proteins that
target specific sites on molecules of therapeutic or industrial in-
terest. However, compared to the design of small molecule recog-
nition or the redesign of dimers with known structures, the task of
creating dimers with novel interfacial geometry from known mo-
nomeric structures is a much greater challenge. Depending on the
size of the interface, the combinatorial complexity of amino acids
involved in a protein/protein interface is likely greater than that of

protein/small molecule binding sites. Additionally, because the
current molecular mechanics protein design approaches are sensi-
tive to the quality of the structural scaffolds used, having the
proper spatial relationship of the subunits in the model dimer is
critical, and this requirement increases the difficulty of de novo
dimer design.
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A properly parameterized docking algorithm can be used to
ensure a suitable spatial geometry between the monomeric sub-
units. For this purpose, we explored the properties of known
high-resolution protein homodimer structures. On average, ho-
modimer interfaces are more hydrophobic and bury twice as much
surface area as heterodimer interfaces.” Their hydrophobic inter-
faces and symmetry make homodimers especially suitable for
molecular mechanics protein design, which has been proved suc-
cessful in the stabilization of proteins through repacking of their
hydrophobic cores.'® Homodimers are therefore plausible targets
not only for parameterizing our docking algorithm so that the
computationally docked molecules are likely to have interfaces
that accept hydrophobic residues, but also for redesigning the
interfaces because we can treat them largely as protein cores.

In this study, we adapted a fast Fourier transform (FFT)-based
docking algorithm'' for protein design. The modified docking
algorithm uses a reduced side-chain representation of the mole-
cules to closely approximate the geometry of homodimer inter-
faces. The reduced representation also provides a background for
unbiased interfacial sequence design. Using parameters derived
from known homodimer complexes, we tested the performance of
our docking algorithm on a set of 121 structures collected by
Bahadur et al.’

Computational Details and Methods

Reduced Molecular Representation

One of the most important factors in the docking process is the
method used to evaluate the fitness of the docked molecules. The
fitness function depends on how the molecules are represented in
space. For our design purposes, the side chains are explicitly
designed in subsequent steps using the ORBIT (optimization of
rotamers by iterative techniques) protein design software' after the
docking process. The docking algorithm must therefore generate a
list of plausible dimer orientations based on an approximate mo-
lecular representation that includes estimated side chains on a
polyalanine backbone to avoid sequence bias before running the
sequence design calculation. A crystal structure is used as the
scaffold for each of the monomers, with the side-chain atoms
beyond Cg deleted. To maintain the overall shape of the surface,
the volume originally occupied by a side chain cannot be left
empty. Therefore, the most important criterion for our choice of a
molecular representation is its ability to approximate the size and
shape of an “average” amino acid side chain in a computationally
tractable manner.

Conceptually, it is possible to use the original side chains in the
docking process, then subsequently replace them during the se-
quence redesign step. If we use this full side-chain representation,
however, we will need a very “soft” scoring function to allow
surfaces to overlap, which can potentially lead to backbone clash-
ing. Because the current design algorithm does not allow backbone
flexibility, this kind of clashing is strictly prohibited. Moreover,
because the side chains on the surface of a protein are usually
longer than those found in the core, the use of full surface side
chains in the docking process would make the creation of a
hydrophobic interface difficult. If the two halves of a dimer are

positioned implausibly far away from each other, the design algo-
rithm will converge to a sequence that may not effectively pack the
interface. The molecular representation most suitable for our ap-
plication is therefore one that allows easy “padding” in the side
chain voids while maintaining the topology of a potential binding
surface. These requirements can be met using spheres of nonphys-
ical sizes to represent atoms on the polyalanine scaffold; some
spheres are inflated to make up for the volume of the side chains
and hydrogens. Because our polyalanine representation of the
backbone does not consider the chemical properties of the side
chains, our docking algorithms uses a simple scoring function that
only evaluates surface complementarities.

Structural Correlations

The surface complementarity of the docked molecules can be
assessed by the correlation function between the two molecules
after discretizing them into 3D grids. Using the Fourier correlation
theorem and FFT, a correlation map that shows correlation scores
as a function of the relative positions of the molecules can be
obtained. If one molecule is assumed to be stationary, then the
correlation map depicts the results of moving a mobile molecule
against the stationary one.'' For scoring the correlation function,
we adopted a 3D grid scoring scheme similar to the one used by
Katchalski-Katzir et al.,'' where all grid points for the mobile
molecule are assigned the value “1,” grid points that are not part of
the protein are assigned “0,” and those for the stationary molecule
are assigned “—15” if in the interior and “1” if on the surface (Fig.
1). The core is defined by the space around the protein atoms by
some radii, and the surface includes the space between the core and
1.5 A beyond the core. With the grid points set up this way, we can
evaluate the correlation scores between the mobile and stationary
molecules by counting the number of overlapping grid points
between the two. Because penetration to the core penalizes the
score, the use of a small penalty value such as “—15" allows slight
penetration while maintaining a high level of correlation on the
surface. Therefore, the scoring function is intrinsically “soft” when
a small penalty is used.

The scoring function described above, however, is not the most
appropriate one for protein design purposes, because it provides no
distinction between side-chain and backbone penetrations. Be-
cause a reduced representation of the surface side chains is used in
our docking protocol, some penetration on the side-chain level is
considered favorable, as this will create more surface overlap and
possibly make the designed interface more viable. Backbone pen-
etrations, on the other hand, must be prohibited. To account for
this, a third category of grid point scores was created. In addition
to having values of “0” (for vacuum), “1” (for favorable surface)
and “—15” (for unfavorable but allowed penetration), a grid point
can also be assigned the value of “—1000" if it falls within 1 A of
an atom center (Fig. 1). Although rarely needed, this third “hard
shell” ensures no backbone clashes during docking.

C2 Symmetry-Related Dimers

The use of symmetry offers several important advantages. Most
significantly, C2 symmetry can greatly reduce the search space
required for the docking process. Using FFT in conjunction with
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® "+1" grid points

© "-15" grid points

® "-1000" grid poinis
"0 grid points

Figure 1. Scoring scheme for discretized molecules. Grid points corresponding to the mobile molecule are assigned uniformly the value of “1”;

grid points for the stationary molecule are assigned the values

e
s

15” or “—1000” depending on their locations with respect to the molecule;

grid points that are not part of either molecule are assigned the value of “0.”

C2 symmetry in the docking stage provides an additional reduction
in computational cost.

Some of the reduction in search space results from redundancy
associated with C2 symmetry. This can be explained using a
coordinate system composed of two symmetry-related coordinate
systems. According to Euler’s rotation theorem, any rotation can
be described by a set of three angles called Euler angles. There are
many conventions for the Euler angles; we can depict the concept
simply by using the ZXZ convention. In this convention, the three
Euler angles, ¢,0, i, are defined as follows: ¢ is the first rotation
ranging from O to 27 about the Z-axis, 6 is the second rotation
ranging from 0 to 7 about the x’-axis, and ¢ is the third rotation
ranging from 0 to 27 about the z'-axis (Fig. 2). These three
rotations are not commutative, and therefore must be applied in
this specific order. The three angles are depicted in Figure 2 with
a modified coordinate system to illustrate the search space reduc-

tion associated with C2 symmetry. In a Cartesian coordinate sys-
tem, to thoroughly explore the rotations of a rigid body with
respect to the coordinate system (or with respect to another rigid
body in the case of docking searches), the rotational space that
must be covered is 277 X 7 X 2, as defined by the full ranges of
the three Euler angles. In Figure 2, the coordinate system shown
can be described as a combination of two separate coordinate
systems, XYZ and énZ, related to each other by a twofold (C2)
symmetry about the Z-axis. By the definition of C2 symmetry, any
point in the XYZ coordinate system corresponds to a point in the
énZ system by a 180° rotation. Due to the 180° rotational sym-
metry with respect to the Z-axis, the ranges of ¢ and i in this
XYZ, énZ combined coordinate system are both reduced by half to
0= ¢ = m 0 = = m, while the range of 6 remains the same.
Rotations beyond the range of 0 to 7 are redundant because the
resulting positions can always be folded back to positions within
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Figure 2. Rotational search space reduction with C2 symmetry related
dimers. Two symmetry related coordinate systems are shown: XYZ
and énZ.

the range of 0 to m, as illustrated by vectors x’ and x". Vector x’
is obtained by rotating vector x° about the Z-axis by ¢, and by C2
symmetry it corresponds to the vector x”, which can also be
obtained by rotating vector x° by ¢ + 7. Due to this redundancy,
the range of ¢ can be reduced from 27 to m, and this is also true
for .

An additional reduction of rotational search space can be
achieved when translational searches are performed. This concept
is illustrated in Figure 3. To maintain the C2 symmetry, rotations
performed on the subunits must be synchronized—the same rota-
tional operation must be performed on both molecules. For clarity,
the two molecules in Figure 3 are set at a fixed distance from each
other when they are rotated, and the rotations are performed at
their respective geometric centers about axes that are parallel to the
symmetry axis. One of the properties of cyclic symmetry groups
such as C2 is that the subunits are related by rotation about a
symmetry axis, and they are always on a plane perpendicular to the
symmetry axis. As illustrated in Figure 3, when each of the
subunits of the C2 symmetry related dimer is rotated to a new C2
symmetry-related orientation, the rotational steps required to
achieve this new orientation can always be replaced by translations
on this plane. Therefore, when translational steps are included in a
docking search, rotations around the symmetry axis or any axis
parallel to the symmetry axis (defined by ¢) can be eliminated
from the searches. FFT replaces explicit translational searches with
an efficient computational process that generates the translational
correlation map. As a result, to thoroughly search all possible
C2-related dimer orientations, we only need to cover m X  (the
ranges of 6 and ¢) when FFT is used; the search space is thus
reduced by a factor of 4.

The computer memory required for discretizing the molecules
can also be reduced when docking C2 symmetry related subunits.
As described previously, the cyclic symmetry requires the subunits
of a C2 related dimer to be on the same 2D plane. This requirement

eliminates the need to explore any translations parallel to the
symmetry axis. If the Z-axis is used as the symmetry axis for a pair
of subunits, only translations along the X- and Y-axis are required
to produce dimers with preserved C2 symmetry. The dimension of
the arena that is parallel to the symmetry axis can therefore be
reduced to the length of the long axis of the molecule instead of
three times this length. The FFT implementation used in our
docking algorithm, however, requires the number of grid points

B

30° 307

Figure 3. Translational equivalence. (A) A pair of C2 symmetry
related monomers in its initial position. (B) Each monomer of the
dimer is rotated by 30° to a new C2 symmetry orientation. (C) The
same orientation as in B can be obtained by two translational moves.
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Table 1. Atomic Radii Determined from Iteration Cycles.

Ranges of good atomic
radii (A)*

Atom label la7w 1c90 Final values used (A)
N 1.4-1.6 1.4-1.55 1.4

(0] 1.3-1.45 1.3-1.35 1.3

C 1.7-1.8 1.7-2.55 1.75

CA 2.15-2.4 2.3-2.4 2.35

CB 2.15 2.2-2.25 2.15

“The range is determined from the radii combinations that gave the best
200 docked scores.

along each dimension to be a power of 2, and thus it is convenient
to simply reduce the dimension parallel to the symmetry axis by a
factor of 2. The number of grid points required for the search
becomes half. Assuming 1° is used as the rotational increment,
docking a C2-related dimer is 1440 times faster than docking a
dimer with no symmetry (47 rotational search space reduction
times twofold grid point reduction equals a total reduction of 8r;
for 1° rotational increments, this equals 8§ X 180 or 1440-fold
reduction).

Determination of Practical Atomic Radii

Because the side chains are truncated in our protein model, we
approximate side-chain volumes with spheres centered at the Cg
atoms; the projection distance from the Cz atoms (atomic radii)
should be chosen to ensure that the resulting dimer interface
retains enough space for side-chain placement. We determined an
appropriate Cg atomic radius by calculating the surface comple-
mentarity scores for two high-resolution crystal structures of pro-
tein/protein complexes in the PDB. The molecules were dis-
cretized in their native crystal orientations with the side chains
truncated, and surface complementarities were calculated. Initially,
we tried several radii keeping a uniform radius for all the atoms.
However, complexes that had backbone-to-backbone hydrogen
bonds always clashed at these points. It was obvious that a uniform
radius was inadequate, so we decided to parameterize the radii for
each of the five atom types in our polyalanine model. We tested a
range of values for amide nitrogen (atom label: N), C,, (atom label:
CA), Cg (atom label: CB), carbonyl carbon (atom label: C), and
oxygen (atom label: O). The crystal structures of two high-reso-
lution complexes were used: PDB entries 1a7w and 1c90 (1.55-
and 1.17-A resolution, respectively). Combinations of atomic radii
within the following ranges were tested: nitrogen between 1.4 and
1.6 A; oxygen between 1.3 and 1.5 A; and all carbons (carbonyl
carbon, C,, and CB) between 1.7 and 2.4 A. A 0.05-A increment
was used to step across each of the ranges. The resulting docking
correlation scores were sorted and the radii combinations that gave
top ranking scores were analyzed.

The correlation score can be very sensitive to changes in radii
for some atom types but not for others. The level of sensitivity is
reflected in the “good radii” ranges shown in Table 1; a wider
“good radii” range indicates that the correlation score is less

sensitive. The values used for subsequent docking tests were
determined as follows. If the radii ranges obtained from both
structures were about equal, as for atoms N and O, the minimum
value of the range was used. If the radii ranges from the two
structures matched poorly, as for atoms C, CA, and CB, the mean
value of the narrower range was used. The final atomic radii
obtained from the parameterizations (Table 1, last column) were
used to test the docking algorithm.

Docking Test Cases

We tested the performance of our docking algorithm on a set of
121 structures of the 122 collected by Bahadur et al.® One of the
structures from the set (1alo) was not used due to its exceptionally
large size (907 residues). The structures of the 121 dimers were
downloaded in their biological unit coordinates from the PDB.'?
The protein coordinates were processed to resolve any naming and
numbering discrepancies, and the subunits were separated into
individual files. For each docking calculation, we loaded the co-
ordinates of just one of the subunits, and created the other subunit
by duplicating and rotating the loaded coordinates by 180° about
the x-axis. Except for orientation, the two subunits were thus
identical to each other. The rotational search space was sampled
with 1° increments over 180° for both the y- and the z-axes.
Depending on subunit size, the number of grids used for the arena
was either 128 or 256 in the y and z dimensions, and half this
number in the x dimension. All tests were carried out at 1 A grid
spacing.

Docking searches and surface complementarities were calcu-
lated for each of the 121 dimers; coordinates for the top 50
orientations were generated for each dimer and compared to the
coordinates of the PDB structure. RMSDs were evaluated between
all the C_, atoms from both subunits of the docked orientations and
their corresponding C,, atoms on the PDB structures. The results
are shown in Table 2; RMSDs are only listed if less than 3 A. From
the top 50 docked structures for each dimer, the rank with the
lowest RMSD (best match) is listed along with the first rank with
a RMSD <3 A. The buried interface surface area contributed by
one of the subunits (reported as B/2) and the ratio of this surface
area to the number of residues in the subunit (Area/Res) are also
reported. The 121 dimers tested are sorted according to Area/Res
in Table 3 along with indications of hits (shown with “+”) and
misses (shown with “.””). A dimer is considered to be a hit if there
is at least one docked dimer in its top 50 orientations with an
RMSD <3 A.

Results and Discussion

We achieved 65 successful predictions (hits) out of 121 test cases,
slightly above 50%. Although there are no docking benchmarks
focusing exclusively on homodimers, our results are comparable to
the few homodimer docking cases reported previously, in which
three of five test cases were within the top 50 ranked structures.'?
The ranks produced by our simple surface complementarity scor-
ing scheme, however, do not always correlate with the RMSDs of
the models. In most cases, the closest match to the wild-type
orientation does not receive the highest correlation score, although
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one-third of the closest matches are ranked in the top 10 (Table 2,
column 4). The best match is predicted as the top rank in four cases
(1ajs, 1tox, 1trk, and 1vfr). This is not surprising, because we are
using a reduced representation model of the proteins. Because all
four of these cases use backbones extensively to achieve binding
specificity, it appears that only dimers with these properties are
correctly ranked by our scoring scheme. The inability to rank
models correctly is a problem that plagues all docking algorithms,
and several research groups have developed sophisticated scoring
functions that include the properties of the side chains to amelio-
rate this problem.'*~'3

It should be noted that for our purposes, the ranking does not
significantly affect our intended use. We are interested in identi-
fying all distinct dimer orientations for de novo protein design, and
as long as the interface is plausible it is not necessary to recover
the native binding interface. When testing our docking algorithm,
however, it is important to recover the native binding interface
(regardless of their reported ranks) and to obtain good matches
when they are identified because these two factors directly check
the validity of our atomic radii. As shown in Table 2, 45 of the 65
successfully docked dimers have RMSDs of less than 1 A, indi-
cating that our reduced representation protein models are reason-
able approximations. We found that we can reliably reproduce
most dimers that have backbone-to-backbone interactions across
the interface, namely the hydrogen bond pairing between two
intermolecular B-strands, despite the absence of an explicit hydro-
gen bonding term (Fig. 4). An example of a dimer making 3-strand
contacts across the dimer interface is shown in Figure 4A. The
results suggest that our atomic radii capture these hydrogen bonds
well. However, for the helical protein shown in Figure 4B, the
overall dimer orientation is recovered, but the docked molecule is
slightly offset from the native orientation.

Our successful prediction for dimers with backbone-to-back-
bone hydrogen bonds across the interface suggests that the radii
used for atom N, C,_, C, and O are plausible. However, the task of
parameterizing the Cg atoms remains a challenge. The dimer
orientation predicted for the 1rfb structure (not shown), for exam-
ple, showed a less promising C, RMSD of 2.38 A when compared
to the native structure. Closer examination revealed that the offset
is likely due to phenylalanine and tyrosine residues in the interface.
Aromatic residues have relatively long flat side chains and cannot
be modeled well by spheres. Similarly, the distances between the
backbones of the docked 1rpo dimer (shown in Fig. 4B) are too
close, again indicating that the Cg radius used for this particular
type of dimer is not large enough. Furthermore, because the
docking algorithm searches for the highest complementarity be-
tween the dimers, interdigitation between the spheres representing
side chains on the surface of a helix is preferred over stacking the
spheres head-on—as seen with the native 1rpo dimer. This is why
we are unable to reproduce helix-to-helix interfaces with high
precision. Nevertheless, this preference for interdigitation seren-
dipitously allows the reproduction of native hydrogen bonding
patterns in our test cases that form crossinterface hydrogen bonds
between [-strands even without the use of an explicit hydrogen
bond term in the scoring function.

Although the use of a single, median-sized sphere for all side
chains cannot accurately represent both large and small amino
acids, the fact that both sides of an interface are “designed” in our

method reduces this concern. For any large amino acid selected in
the interface, there has to be a complementary small amino acid on
the receiving end to avoid clashing. The benefit of creating such
“knobs into holes” characteristics in the interface remains an open
question as most protein—protein interfaces are relatively flat,'® but
this knobs into holes feature could potentially contribute to higher
levels of binding specificity.

Comparing the ratios of interface area to the total number of
residues in each monomer (reported as Area/Res in Tables 2 and 3)
illustrates another interesting point. These ratios are used as a
rough measure of the relative size of the interface in the context of
the entire subunit. Sorting the 121 dimers according to this ratio
reveals that our docking success rate is much higher for dimers that
bury relatively large surface areas with respect to their sizes
compared to those that do not. For example, our success rate is
70% for dimers with Area/Res >7.5 A2 (60 of the 121 dimers
tested) vs. 50% for the entire set. This may be explained by the fact
that larger proteins have more competing sites on their surfaces
that could provide good docking correlation scores. By reporting
only the top 50 docked dimers in our tests, the rank listings may
not be deep enough to include the native orientations; these larger
proteins are therefore more likely to be “misses.” For example, the
laor dimer crystal structure (not shown) shows a highly comple-
mentary interface, but because this protein is relatively large (605
residues), our docking algorithm does not pick up the native
orientation in the top 50. Other docking algorithms severely pe-
nalize the competing sites (“false positives”) by incorporating
biochemical data or electrostatic terms in the scoring function,
features we cannot include given that our protein model does not
include full side chains. The trend observed in Table 3 is not
attainable, however, if we simply sort our results by the number of
residues. Assuming that typical protein interface sizes fall within a
narrow range, the docking success rate is expected to be higher for
docking smaller proteins. However, the interface sizes found in our
test cases range from 498 to 7149 A, which is sufficiently broad
that normalizing by protein size (i.e., the number of residues) is
necessary to observe the trend reported above.

Even though our docking algorithm was developed to design
novel dimers, it contains all the basic components found in dock-
ing algorithms that use FFT as a search tool and can be used as a
stand-alone algorithm for predicting dimer orientations. However,
because of differences in the nature of the problems to be ad-
dressed, our algorithm should not be compared to other general
docking algorithms. Protein docking is an active area of research,
and much progress has been made in developing algorithms suited
to this purpose.'*'>'73® Although the use of sequence specific
reduced representations for side chains have been reported,'®2® the
trend is to model proteins with greater accuracy either through
implicit energy terms or explicit simulations. This includes the
incorporation of desolvation terms, electrostatic terms, side-chain
flexibility, and Monte Carlo simulations, among others. Our algo-
rithm, on the other hand, relies largely on a sequence-independent
reduced representation of the protein. Although potentially useful
for protein design purposes, this reduce representation greatly
diminishes our chances of predicting native orientations, especially
if the driving force for association is specific side-chain—side-chain
interactions instead of surface geometric complementarity.



Table 2. Docking Results.

Best match to wild-type® First rank with RMSD <3 A® Interface®
PDB Residues Long axis (A)* Rank® RMSD (A) Rank® RMSD (A) B2 (A% Area/Res (A%
12as 327 72.3 — — — — 1989 6.1
la3c 166 55.6 — — — 853 5.1
ladi 285 64.9 — — — — 1353 4.7
ladu 254 63.1 7 0.291 1 0.656 2547 10.0
laa7 158 47.7 — — — — 1125 7.1
lad3 446 124.8 4 0.314 1 0.533 3936 8.8
lade 431 81.4 17 2.452 17 2.452 2708 6.3
1af5 126 60.5 — — — — 856 6.8
lafw 390 72.7 31 0.333 1 0.558 2400 6.2
lajs 412 100.9 1 1.124 1 1.124 3401 8.3
lamk 250 59.0 50 0.072 1 0.532 1477 5.9
laor 605 79.3 — — — — 1180 2.0
lag6 245 60.9 33 0.716 28 1.097 2232 9.1
lauo 218 53.8 — — — — 662 3.0
1b3a 67 104.0 — — — — 763 11.4
1b5Se 241 67.3 2 0.156 1 0.156 2581 10.7
1b67 68 60.5 44 0.537 44 0.537 1607 23.6
1b8a 438 107.4 — — — — 4391 10.0
1b8j 448 81.7 22 0.309 1 0.348 3794 8.5
1bam 200 61.7 — — — — 745 3.7
1bbh 131 54.3 — — — — 771 5.9
1bd0 381 95.0 8 0.699 8 0.699 3091 8.1
1bif 432 85.9 — — — — 858 2.0
1biq 339 71.3 15 0.408 1 1.324 3004 8.9
1bis 146 54.9 16 2.563 16 2.563 1495 10.2
1bjw 381 84.5 25 0.501 2 0.795 2938 7.7
1bkp 278 65.8 — — — — 2206 7.9
1bmd 326 65.8 14 0.311 13 0.312 1564 4.8
1brw 433 82.0 — — — — 1083 2.5
1bsl 323 68.7 5 1.38 5 1.38 1918 5.9
1bsr 124 67.8 13 0.975 3 0.997 1888 15.2
1buo 121 86.3 13 0.259 2 0.536 1972 16.3
1bxg 349 67.3 — — — — 1041 3.0
1bxk 341 79.2 — — — — 1286 3.8
lede 96 69.5 2 0.621 1 0.638 3918 40.8
leg2 389 1134 — — — — 1298 33
Ichm 401 88.3 23 0.525 1 0.655 3171 7.9
lcmb 104 53.1 6 1.494 1 1.9 1797 17.3
lenz 363 89.5 11 1.565 11 1.565 2447 6.7
lcoz 126 51.5 — — — — 1050 8.3
lcsh 435 88.9 34 0.033 1 0.343 5057 11.6
lett 294 65.8 45 0.385 1 0.632 1990 6.8
levu 551 146.0 14 1.2 3 1.282 2436 4.4
lczj 110 54.4 — — — — 829 7.5
ldaa 277 70.2 15 0.448 15 0.448 2193 7.9
1dor 311 75.9 30 0.368 16 1.326 2189 7.0
1dpg 485 102.8 — — — — 2293 4.7
1dgs 381 71.3 4 0.844 3 1.843 1640 4.3
ldxg 36 31.7 21 0.326 21 0.326 729 20.3
1e98 210 55.2 — — — — 770 3.7
lebh 436 78.8 43 0.799 23 2.481 1784 4.1
1f13 722 126.8 — — — — 2556 3.5
1fip 73 55.2 23 0.55 4 0.658 1836 25.2
1fro 176 68.1 3 0.151 1 0.203 3505 19.9
lgvp 87 54.4 5 1.5 5 1.5 908 10.4
1hhp 99 52.8 2 0.056 2 0.056 1599 16.2
1hjr 158 63.7 — — — — 962 6.1
1hss 111 45.1 44 14 11 1.624 1101 9.9
1hxp 340 78.1 22 0.259 1 0.5 3402 10.0
licw 69 434 47 0.898 47 0.898 954 13.8
limb 273 60.4 36 1.706 9 2.573 1623 5.9
lisa 192 60.1 — — — — 920 4.8
livy 452 77.8 — — — — 1601 3.5
ljhg 101 59.1 — — — — 2207 21.9

(continued)
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Table 2. (Continued)

Best match to wild-type® First rank with RMSD <3 A" Interface®
PDB Residues Long axis (A)* Rank® RMSD (A)° Rank® RMSD (A)° B2 (A% Area/Res (A2)f
ljsg 111 60.2 — — — — 794 72
1kba 66 477 28 2.286 28 2.286 498 7.5
1kpf 126 45.8 5 0.31 3 0.358 1867 14.8
1lyn 125 61.9 — — — — 948 7.6
1mé6p 146 53.3 37 1.143 9 1.282 1025 7.0
Imkb 171 58.0 2 0.46 1 0.799 1605 9.4
Imor 366 70.0 50 0.513 21 1.401 2540 6.9
Inox 200 723 10 0.397 1 0.741 3033 15.2
Inse 416 84.0 — — — — 2736 6.6
Insy 271 68.9 19 0.486 19 0.486 2592 9.6
loac 719 109.3 — — — — 7149 9.9
lopy 123 52.5 28 0.249 23 0.58 1048 8.5
Ipgt 209 58.3 15 2.808 15 2.808 1238 5.9
Ipre 449 131.0 29 0.844 17 1272 2300 5.1
1gfh 212 98.5 — — — — 2264 10.7
1qhi 304 68.5 23 0.713 8 2.149 1714 5.6
1qr2 230 75.8 — — — — 1947 8.5
1r2f 283 73.4 48 2.601 36 2.635 1746 6.2
Ireg 122 105.3 — — — — 659 5.4
1rfb 119 63.7 9 1.28 1 1752 2650 223
Irpo 61 53.4 44 0.704 1 1.084 1405 23.0
Ises 421 136.3 — — — — 2211 53
Islt 133 427 — — — — 536 4.0
Ismn 241 54.8 26 0.999 1 1.552 866 3.6
Ismt 98 772 34 0.267 1 0.3 1970 20.1
Isox 463 81.3 — — — — 1404 3.0
Itcl 175 57.7 — — — — 1540 8.8
Itox 515 94.7 1 0.026 1 0.026 3721 72
1trk 678 105.6 1 0.371 1 0.371 4476 6.6
luby 348 78.1 12 2.564 6 2.576 2168 6.2
lutg 70 46.6 44 1.263 9 2.391 1485 212
Lvfr 217 726 1 0.368 1 0.368 3431 15.8
1vok 192 73.4 — — — — 1577 8.2
1wt 108 58.6 — — — — 698 6.5
1xs0 149 47.0 — — — — 662 4.4
2arc 161 56.0 — — — — 765 4.8
2cey 127 53.9 — — — — 792 6.2
2hdh 286 74.4 — — — — 1524 53
2ilk 155 78.0 8 0.314 1 0.745 4542 29.3
2lig 157 89.1 — — — — 1686 10.7
2meg 215 77.7 — — — — 1646 7.7
2nac 374 75.5 — — — — 3789 10.1
20hx 374 77.8 — — — — 1718 4.6
2spe 106 1183 — — — — 2508 23.7
2sqc 623 84.8 — — — — 809 1.3
2tct 198 77.1 45 1.198 45 1.198 2675 13.5
tgi 112 75.6 — — — — 1262 113
3dap 320 79.9 — — — — 2661 8.3
3grs 461 79.1 — — — — 3302 72
3sdh 145 49.7 — — — — 873 6.0
3ssi 108 56.6 36 0.824 22 2.878 866 8.0
4cha 239 55.5 — — — — 1026 43
4kbp 424 79.4 24 2.793 24 2.793 1478 3.5
Scsm 250 69.6 25 2.13 9 2.962 2007 8.0
5rub 436 86.0 — — — — 2859 6.6
8prk 282 56.8 — — — — 969 3.4
Iwga 170 62.3 2 0.132 1 0.139 2293 13.5

“The long axis of the molecule is determined by two times the distance from its geometric center to the farthest atom.
*Only the molecules from the highest 50 correlation scores are considered.

°_— means no match within 3 A RMSD from the top 50 ranked molecules.

Per subunit.

“Data in this column are taken from ref. 9.

The interface area contributed by each subunit divided by the number of residues per subunit.
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Table 3. Area/Residue Ratios and Docking Hits.*
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PDB Area/Res (A%)® Hit® PDB Area/Res (A" Hit® PDB Area/Res (A2)° Hit®
2sqc 1.3 Lhjr 6.1 . laq6 9.1 +
laor 2.0 lafw 6.2 + Imkb 9.4 +
1bif 2.0 Ir2f 6.2 + Insy 9.6 +
1brw 2.5 luby 6.2 + lhss 9.9 +
1bxg 3.0 2ccy 6.2 . loac 9.9 .
Isox 3.0 lade 6.3 + lhxp 10.0 +
lauo 3.0 Iwtl 6.5 1b8a 10.0 .
leg2 33 Srub 6.6 la4u 10.0 +
8prk 3.4 . Inse 6.6 . 2nac 10.1 .
4kbp 35 + Itrk 6.6 + 1bis 10.2 +
113 35 lenz 6.7 + lgvp 104 +
livy 35 . lctt 6.8 + 1gfth 10.7 .
1smn 3.6 + laf5 6.8 . 1bSe 10.7 +
1e98 3.7 Imor 6.9 + 2lig 10.7

Ibam 3.7 Im6p 7.0 + 2tgi 11.3

1bxk 3.8 Idor 7.0 + 1b3a 11.4 .
Islt 4.0 . laa7 7.1 lesh 11.6 +
lebh 4.1 + ljsg 72 9wga 13.5 +
4cha 43 . 3grs 7.2 . 2tct 135 +
1dgs 43 + Itox 7.2 + licw 13.8 +
levu 4.4 + lezj 7.5 Lkpf 14.8 +
1xso 4.4 lkba 7.5 + Inox 15.2 +
2o0hx 4.6 Ilyn 7.6 Ibsr 15.2 +
1dpg 4.7 2meg 7.7 . Ivfr 15.8 +
ladi 4.7 1bjw 7.7 + lhhp 16.2 +
2arc 4.8 Ichm 79 + Ibuo 16.3 +
lisa 4.8 . ldaa 7.9 + lemb 17.3 +
1bmd 4.8 + 1bkp 7.9 . 1fro 19.9 +
1pre 5.1 + 3ssi 8.0 + Ismt 20.1 +
la3c 5.1 Scsm 8.0 + ldxg 20.3 +
Ises 53 1bd0 8.1 + lutg 21.2 +
2hdh 53 Ivok 8.2 . ljhg 21.9 .
Ireg 5.4 . lajs 8.3 + Irfb 223 +
1qhi 5.6 + 3dap 8.3 Irpo 23.0 +
1bbh 59 . Icoz 8.3 1b67 23.6 +
lamk 59 + 1qr2 8.5 . 2spc 23.7 .
1pgt 59 + 1b8j 8.5 + Lfip 252 +
1bsl 5.9 + lopy 8.5 + 2ilk 29.3 +
limb 59 + Itcl 8.8 . lcde 40.8 +
3sdh 6.0 lad3 8.8 +

12as 6.1 1biq 8.9 +

“Sorted by the Area/Res ratio of each PDB entry in ascending order.
The interface area contributed by each subunit divided by the number of residues per subunit.
“Only the top 50 correlation score ranked dimers are considered.

“+” means there is at least one docked dimer with an RMSD less than 3 A to the native structure. .

no match.

In summary, our docking algorithm performs reasonably well
in docking a test set of 121 homodimers. For matches that fall
below the 3-A threshold, the average best RMSD is 0.87 10\,
indicating that the atomic radii used for the backbone and the
reduced representation side chains on the Cg atoms are reasonable.
There is about a 50% success rate in finding the native orientations
in the entire docking set. The success rate is significantly higher for
dimers that form relatively large interfaces with respect to their
amino-acid chain length.

Xt

means there is

Conclusions

We have described the development of a docking algorithm that
generates dimer orientations for protein design purposes. To po-
sition the backbones correctly for protein design and to avoid bias
toward wild-type sequences, the wild-type side chains are not
considered in the docking process. The strategies employed in-
clude the use of 3D grids to represent the protein molecules, and
spheres to approximate the side chains. The spheres are defined by
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1hhp (RMSD 0.056)

1rpo (RMSD 1.084)

Figure 4. Sample docking results. Native orientations are shown in
magenta and docked orientations are shown in green. For each of the
dimers, one of the monomers of the docked structure was superim-
posed on the corresponding native monomer (shown here on the left);
the overlapping or offset portions of the docked structure relative to
the native structure can be seen by the amount of green displayed. C,
RMSDs are indicated in paranthesis next to the PDB codes. (A)
Proteins that use backbone hydrogen bonds in the interface to form
crossdimer B-sheets. (B) Helical proteins that primarily use side-chain/
side-chain interactions to form the interface.

atomic radii, which are determined using known high-resolution
dimer structures. Established FFT correlation methods are em-
ployed to efficiently cover all translational dimensions and search
through all six degrees of freedom, and surface shape complemen-
tarities are used to score the fitness of the docked structures.
Because C2 symmetry related homodimers tend to bury more
surface area and use more hydrophobic amino acids in the inter-
face, their interfaces are more protein core-like and should be
modeled well by our protein design algorithms. We therefore
parameterized our docking algorithm using C2 symmetry-related
homodimers and used dimers of this type as test cases. Imposing
C2 symmetry also allowed us to make modifications that signifi-
cantly improve computational efficiency. The resulting docking
algorithm performed reasonably well in the 121 test cases used to
validate the reduced representation protein model. These results
suggest that the reduced protein side-chain representation em-
ployed by our algorithm is a reasonable estimate, and the shapes
defined by this representation can be used to position protein
backbones to form plausible dimer orientations for protein design.
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