Chemistry 365 Biochemistry, Cell & Molecular Biology I Spring 2018

Instructor:

Dr. Christal Sohl, Ph.D.

Department of Chemistry and Biochemistry

Office: CSL 328

e-mail: csohl@mail.sdsu.edu

Course time:

12:30-1:45 p.m., Tues. & Thurs., NE-060

Office hours:

Thursdays 9:00-10:00 a.m. and 2:00-3:00 pm

Due to our class size and lack of TA, I cannot effectively respond to emails, so make use of office hours. If you are asking a question that is in the syllabus, I will not respond to your email. Please put "CHEM 365 scheduling alternative office hours" in the subject line to ensure I respond in a timely manner if this is the purpose of your email.

Please also note we are a very large class, and office hours are one of the few ways I can get to know you. If you plan to ask for a letter of recommendation for professional schools, I can only write one if you've come often to office hours (i.e., I know who you are beyond your grade!)

Textbooks:

Fundamentals of Biochemistry: Life at the Molecular Level, 5th Edition, D. Voet, J. Voet & C.W. Pratt (John Wiley & Sons, Inc.)

Note we are using the Immediate Access program. Some of the required course materials for this class are provided in a digital format by the first day of classes and are free through the add/drop date of January 30th at 11:59 PM. Your SDSU student account will then be charged a special reduced price for use of the materials for the remainder of the semester unless you opt-out of the content by 11:59 PM on January 30th. Please visit www.shopaztecs.com/immediateaccess for additional information about Immediate Access pricing, digital subscription duration, print add-ons, to opt out and to find frequently asked questions. If you opt out of the program, that does <a href="worthold-normal-norma

Other course materials:

- -Mobile Reef/iClicker Cloud polling system. Traditional handheld clickers will NOT be used; instead we will use the Reef system run on a smartphone/tablet/laptop.
- -Red ParScore scantrons (and #2 pencils) for each exam will be required.
- -You are required to purchase a **subscription to Sapling** for this class to gain access to required homework.
- -Information will be posted on Blackboard, so please check this site regularly. Most lectures will be posted here.

Course details:

Prerequisites - Chemistry 232, and 232L; Biology 203 and 203L

Course description - This is the first in a series of integrated courses (Chem 365, Biol 366, Biol 366L, Biol 567, and Biol 567L). Biochemistry and molecular biology allow us to explain the diverse and complex processes required for life and what goes awry in disease. This is a thriving area of research, and so I will supplement the assigned text with examples of the types of cutting-edge research and case studies of diseases related to our topics of study.

Overall learning goals:

- 1) To understand that life consists of a complex set of chemical processes
- 2) To integrate system-wide the biomolecules that perform and/or are affected by these processes
- To have the tools to evaluate the biological functions at work in health and disease
- 4) To decide that you can help society in evaluating and disseminating accurate scientific information
- 5) To discover that science is an ongoing endeavor; that what we are learning in class is the foundation for laboratory research addressing human disease, environmental issues, technology development, etc.

Specific learning objectives:

- 1) To know the biological role of biomolecules, understand their building blocks, and apply their chemical characteristics to explain how they are suited for their role
- 2) To understand the structure/function relationship of biomolecules, and use these features to make connections to other classes of biomolecules
- 3) To apply basic equations to assess energetics, buffering, and enzyme kinetics and inhibition
- 4) To evaluate how class concepts are being used in the lab and in the health fields

Resources available to students - The text is the primary resource for this course. Lectures will not fully cover all textbook topics, although a short list of "lecture goals" will be highlighted at the beginning of each lecture to aid students in studying for exams. Most slides used in lectures will be posted in Blackboard, but answers to In Class Problem Sets and Reef/iClicker cloud questions will not be posted. You will miss this material if you don't attend. Make use of office hours to ask questions about material you find confusing before you encounter it on your exam.

In Class Problem Sets – There will be three In Class Problem Sets to help students master learning objectives and prepare for exams that will be worked in class for points. It is possible that some exam questions will be taken from the problem sets. In addition, students will benefit from being able to answer the "checkpoint" questions and the problems present at the end of chapters in the Voet, Voet, and Pratt text. The end of chapter problems in particular will help students prepare for exams.

Participation – This will come from In-Class Problem Sets (using Reef/iClicker Cloud) and from answering In-Class Reef/iClicker Cloud questions. For the Reef/iClicker Cloud questions, you will be graded on participation, not whether you have answered the

questions correctly. You <u>must</u> register for the Reef/iClicker cloud software for this class in blackboard to receive credit. Students will not receive any points for days they experience any malfunctions or do not bring the necessary materials. <u>You must have >75% attendance over the semester to receive the full 25 points. Reef/iClicker points are not awarded as partial credit.</u>

Homework – There will be graded homework assigned for each chapter that will be administered via Sapling. Due dates will be given via email or Blackboard.

Exams and grading —There will be three 4 exams, including the final which is not cumulative. Each exam is worth 150 points. You will need to purchase and bring the small red parscore scantrons, #2 pencils, and calculators to each exam. If a student scores an A on 3 out of 4 exams, the fourth exam will be dropped if this procedure benefits the student's grade.

Exam 1: Chapters 1-3 (150 points)

Exam 2: Chapters 4-6 (150 points)

Exam 3: Chapters 7-10 (150 points)

Exam 4: Chapters 11-12 (150 points)

Participation: In Class Problem Set 1 (25 points), In Class Problem Set 2 (25 points), answering 75% of iClicker questions (50 points; partial credit not awarded), for 100 points total

Homework: 100 points total (average of all homework sets, with one lowest homework

dropped)

Total course points: 800

Curving – I will curve each exam to have an average between 65-70 (if the class average is higher than 70, I will not curve down, I will just skip a curve for that exam). <u>I</u> will not curve your final score. Curving is at my discretion, policies may be changed, and I do not solicit opinions on curving from students (so don't waste your time telling me your thoughts, please!)

Grading scale –

 $A = \ge 92.5\%$

A = 89.5 - 92.4%

B + = 87.5 - 89.4%

B = 82.5-87.4%

B = 79.5 - 82.4%

C + = 77.5 - 79.4%

C = 72.5-77.4%

C = 69.5 - 72.4%

D+ = 67.5-69.4%

D = 62.5-67.4%

D- = 59.5-62.4%

F < 59.4%

Expectations - I expect you to:

1) Try to read the assigned material before coming to class. We cannot cover everything in class, so reading the text is vital. Doing so before the class will help you fully engage. If you fail to read the material before class, do so before the exam.

- 2) Attend lectures and participate in learning.
- 3) Help provide a positive and safe space for learning. This includes showing respect to your peers and I, and not using cell phones or disrupting others by websurfing.
- 4) Seek help during office hours as needed.

Attendance and absences – Lectures will provide material beyond the scope of the text including focus on medical relevance and technological tools used in research labs, so attendance is strongly encouraged. To receive full percentage points in participation, you must participate in the In-Class Problem sets and answer 75% of the Reef/iClicker questions over the course of the semester -- these points are issued as "all or nothing". Thus skipping class participation (i.e. skipping class) will negatively impact your grade. Having someone answer your Reef/iClicker questions is academic misconduct and will be treated as such.

You are required to attend class on exam days and in class problem set days. If you are going to miss an exam and/or an in class problem set and have a valid excuse, I need to know at least 1 week in advance (with the exception of documented medical or other emergencies to be assessed at my discretion). Come and see me AND email me so I have written record of this. You are required to provide a written excuse from the Office of Student Life. If you miss an exam or Problem Set and 1) do not have a valid excuse and documentation and/or 2) did not communicate this absence to me in advance both in person and via email, you will not be able to make up points. Reef/iClicker points for non-In-Class Problem Sets days cannot be made up.

Students with Disabilities - The University is committed to providing reasonable academic accommodation to students with disabilities. If you require accommodation, contact the Student Disability Services Office (or visit http://go.sdsu.edu/student_affairs/sds/) at (619) 594-6473. The instructor cannot provide any test accommodations without the prior consent of Student Disability Services.

Religious Observances - By the end of the second week of classes, students should notify the instructors of any planned absences for religious observances. The student and instructor will work together to reasonably accommodate students who have notified in advance of planned absences for religious observances.

Statement on Cheating and Plagiarism – Basically, don't cheat, no exceptions! The University adheres to a strict policy regarding cheating and plagiarism (http://studentaffairs.sdsu.edu/srr/conduct1.html). If you cheat you will receive an F for the course and you will be referred to the University for disciplinary measures. If you have questions on what is plagiarism, please consult the policy (http://www.sa.sdsu.edu/srr/conduct1.html). If you feel overwhelmed, come to office hours. Appreciate how cheating can ruin your otherwise bright future.

Syllabus is Subject to Change - This syllabus and schedule are subject to change. If you are absent from class, it is your responsibility to check on announcements made while you were absent.

The following schedule provides the topics, required readings, and important dates.

	e following schedule provides the topics, required readings, and important of		
Date	Topic	Pre-class	In class problem
		reading	sets, Sapling HW
		assignment	
1/18	1: Chemistry of life	Chap 1, pg 1-	HW 1 assigned
	Case study: What's in a genome?	11	
1/23	2: Energy in biological systems	Chap 1, pg	
		11-22, Chap	
		14, pg 452-57	
1/25	3: Water, acids, bases and buffers; non-	Chap 2, pg	HW 1 due
	covalent interactions	23-41	HW 2 assigned
	Case study: can you alter your pH with		J
	diet?		
1/30	4: Group work: in-class problem set 1	Review Chap	Problem Set 1
1700	4. Group Work. In Glass problem set 1	1, 2	1 Toblom Cot 1
2/1	5: Nucleotides, nucleic acids, genetic info	Chap 3, pg	HW 2 due
Z/ I	Tools of the trade: HIV antiretrovirals	42-53	HW 3 assigned
2/6	6: Sequencing and genomics	Chap 3, pg	TIVV O GOOIGIICU
2/0	Case study: power and ethics of CRISPR	53-66	
2/8	7: Recombinant DNA technology		
2/0	Tools of the trade: GMOs	Chap 3, pg 66-79	
	Tools of the trade. GMOS	00-79	
0/40	O. Arriva and I	01	LINAL O. alara
2/13	8: Amino acids	Chap 4, pg	HW 3 due
0/45		80-96	HW 4 assigned
2/15	EXAM 1 (CHAPTERS 1-3)		
2/20	9: Protein purification	Chap 5, pg	HW 5 assigned
		97-109	
2/22	10: Protein sequencing, evolution	Chap 5, pg	HW 4 due
	Tools of the trade: proteomics	110-129	
2/27	11: Proteins: primary, secondary, and	Chap 6, pg	HW 6 assigned
	tertiary structure; student-led interest TBD	131-158	
3/1	12: Proteins: quaternary structure; stability	Chap 6, pg	HW 5 due
	and folding	158-179	
	Prep for Hands-on Demo		
3/6	13: Tools of the trade: X-ray	Focus on	HW 6 due
	crystallography	lecture slides	
	Hands-on Demo (bring your laptops!):		
	targeting kinases in cancer		
3/8	14: Gene and protein regulation	Focus on	
		lecture slides	
3/13	15: Group work: in-class problem set 2	Review Chaps	Problem Set 2
		4-6	
	1	1	1
		01 7	111047
2/15	16: Drotain function: Mb Uh		
3/15	16: Protein function: Mb, Hb	Chap 7, pg	HW 7 assigned
	·	181-200	Hvv / assigned
3/15 3/20 3/22	16: Protein function: Mb, Hb EXAM 2 (CHAPTERS 4-6) 17: Monosaccharides, disaccharides,		HW 7 due

	polysaccharides	221-234	HW 8 assigned	
3/26-3-30: Happy Spring Break and Cesar Chavez Day				
4/3	18: Case study: alpha-gal; Lipids and membranes	Chap 9, pg 245-261	HW 8 due	
4/5	19: Membranes and membrane proteins	Chap 9, pg 262-276	HW 9 assigned	
4/10	20: Membrane transport; Student-led interest: TBD	Chap 10, pg 293-320	HW 9 due HW 10 assigned	
4/12	21: Enzymatic catalysis; Student-led interest: TBD	Chap 11, pg 322-330	HW 10 due	
4/17	EXAM 3 (CHAPTERS 7-10)		HW 11 assigned	
4/19	22: Mechanisms catalyzed by enzymes; case study: blood coagulation	Chap 11, pg 330-339, 356		
4/24	23: Enzyme kinetics, Michaelis-Menten equation	Chap 12, pg 361-372	HW 11 due HW 12 assigned	
4/26	24: Enzyme kinetics, cont. Demo: reaction rates; case study: enzymeless world	Focus on lecture slides		
5/1	25: Bisubstrate reactions, inhibition Tools of the trade: pre-steady-state kinetics	Chap 12, pg 372-383	HW 12 due	
5/3	26: Catch up on any material, In-class problem set for review (bring calculators) *Note, today's In-class problem set is scored only for regular Reef/iClicker credit*	Review Chaps 9-12		
TBD	FINAL EXAM (CHAPTERS 11-12)			