Chem. 432 Organic Chemistry
Fall 2016
Schedule number: 24767
Professor Jeffrey Gustafson
JGustafson@mail.sdsu.edu

COURSE INFORMATION

Class Days: MWF
Class Times: 11:00-11:50
Class Location: HH 130
Office Hours (and by appointment): MF 945-10:45, W 12:00-1:00
Office Hours Location: CSL 208

Course Overview

Chem 432 is a continuation of Chem 232, and focuses primarily on organic reactions, including mechanisms and synthesis. This is technically an upper division chemistry class and will be challenging, you will need to study as hard if not harder then you did for 232. However, a number of the reactions and mechanisms we go over are well represented in biochemistry and possess applications in diverse interdisciplinary fields ranging from medicinal chemistry to material science. The following ‘Student Learning Outcomes’ represent every major concept in the course.

Student Learning Outcomes (this is your Final exam study guide):

1) Application of bonding and anti-bonding orbitals to help explain reaction mechanism.
2) Predict electronegativity and other period trends of organic molecules.
3) Identify the hybridization of organic atoms.
4) Predict the shape of a functional group or molecule based on hybridization.
5) Application of resonance to explain stricture and reactivity.
6) Predict pKa trends across classes of molecules using resonance, hybridization, and electronegativity.
7) Identify the Oxidation state of Carbon based functional groups.
8) Application of appropriate oxidation condition to obtain desired oxidation state on carbon.
9) Application of appropriate hydride reagents to reduce carbonyl to desired oxidation state.
10) Predict products formed from nucleophile adding into different classes of carbonyl.
11) Identify the electrophilicity trend among a series of carbonyls.
12) Design syntheses of carbon based nucleophiles.
13) Apply hybridization, resonance, and electronegativity to explain reactivity of organometalics.
14) Explain the effects of conjugation on trends in stability of anions, cations, and radicals.
15) Identify the Kinetic and Thermodynamic product of a given reaction.
16) Apply appropriate conditions to obtain desired product (Kinetic or thermodynamic).
17) Produce a reaction coordinate depicting the interplay of kinetics and thermodynamics.
18) Identify the HOMO and LUMO (often antibonding orbital) of simple organic molecules in context of a reaction.
19) Identify the electronic factors that raise or lower the energy level of a HOMO or LUMO.
20) Apply HOMO/LUMO factors to understand caveats of the Diels alder reaction.
21) Identify aromaticity in organic molecules.

22) Depict qualitative molecular orbitals using 'Frost' diagrams, and use this to rationalize a molecule's aromaticity.

23) Identify and rationalize the differences in reactivity between alkenes and aromatic Pi systems.

24) Identify the factors that determine the regioselectivity of electrophillic aromatic substitution.

25) Application of electrophilic aromatic substitution on synthesis of aromatic compounds.

26) Identify functional groups that raise or lower the HOMO of an aromatic group, and predict the effect these groups will have on reaction rate.

27) Identify and rationalize the differences in reactivity among common carbonyl containing functional group.

28) Rationalize the reactivities of common Hydride reagents (i.e. DiBAIH) based on structure.

29) Depict the acid catalyzed addition of alcohols into carbonyls.

30) Identify the factors that influence the equilibrium between a carbonyl and acetal.

31) Recognize the difference between alcohol and amine nucleophiles, and the effect on reaction outcome (acetal Vs imine).

32) Recognize the differences in stability of resultant Imine between primary and secondary amines, and how this manifests itself in enamine chemistry.

33) Indicate the product outcome resulting from addition of nucleophiles into nitriles and factors that influence reaction outcome.

34) Apply concepts to rationalization of Wittig mechanism

35) Application of carbonyl reactivities and leaving group pKas to predict reaction outcomes of acyl substitutions

36) Application of standard methods (SOCl₂, DCC) to activate carboxylic acids towards Acyl substitution

37) Application of strong acids or bases to hydrolyze amides, esters, nitriles, etc… to carboxylic acids.

38) Identification of key step and factors that drive the equilibrium of hydrolyses.

39) Design syntheses where functional groups are converted to other functional groups.

40) Rationalize pKa trends among carboxylic acids and related derivatives.

41) Recognize the factors that influence Keto-Enol tautomerization.

42) Identifying acidic protons adjacent to carbonyls and other electron withdrawing groups

43) Apply enolate reactivity towards alpha halogenation of carbonyls and the haloform reaction

44) Apply enolate reactivity towards alpha alkylation of carbonyl compounds

45) Identify the factors that influence the regioselectivity (kinetic vs. thermodynamic) of enolization, and how this effects the reaction outcome of alpha-functionalization of carbonyls.

46) Recognizing the reactivity of enamines and application to catalytic carbonyl a-functionalization.

47) Identifying the reactivity of enolates towards esters.

48) Recognizing the theromodynamic features that drive the Claissen condensation towards completion.

49) Identifying the reactivity of enols and enolates towards ketones and aldehydes

50) Recognizing the importance of the Aldol in synthesis and natural products

51) Identify the factors that can lead to Aldol condensation products

52) Identifying the reactivity of nucleophiles towards enones and related compounds

53) Recognize that many weaker nucleophiles can add reversibly, and that this correlates with pKa of conjugate acid of nucleophile, and can lead to kinetic (1,2) or thermodynamic (1,4) addition scenarios.

54) Rationalize the pKa trends among amines, and how this correlates to reactivity.
55) Rationalize the pKa trends among phenols and how this correlates to reactivity compared to alcohols.

56) Explain the difference between benzyne addition and nucleophilic aromatic substitution.

Enrollment Information

Prerequisites: A grade of ‘C’ or better in Chem 232 or corresponding course. If you have already taken and passed the 432 lab, bring proof to the first lecture. If you have taken 1st semester Organic chemistry elsewhere and want me to evaluate whether you have satisfied the prerequisites, bring written proof of what you have taken and written documentation of what the class entailed.

Course Materials

Electronic Homework: *Sapling Learning*
http://www.saplinglearning.com/

Access to *Sapling* is available in a bundle with the textbook from the SDSU bookstore or by purchasing an access code for $29.99 directly from Sapling Learning. The Sapling website will direct you to register for this course. eHomework will contribute 250 points to your final grade. (see last page for instructions).

Lecture Notes: Notes will be put up on Blackboard at beginning of semester. These notes cover the major topic I will go over, but are not a replacement for coming to class!! Worked problems and examples done on the board generally will not be posted. You will miss this material if you don’t attend.

Recommended (Optional) Materials:

Molecular Visions Organic Model Kit or similar organic chemistry molecular modeling set. Optional, but highly recommended.

Course Structure and Conduct

This course will be taught in a traditional lecture ‘chalk talk’ format. Electronic homework through Sapling will be due on the Friday before each exam, **however it is imperative you start the homework as we cover the chapter in lecture.** It is also important that you read the book before lecture so that you are somewhat familiar with the material as I present it. I will post PowerPoint notes on blackboard before lecture, as well as my personal hand written lecture notes after lecture. There will be a review session the Thursday before each mid term at 5:00 PM where I will work out problems from my previous exams, and address questions.

Course Assessment and Grading

Exams: Exams will be on **Saturday** September 24, October 22, November 19 1000-1200

Final Exam: December 230-430 PM in TBD

There will be three 2 hour midterm exams during the semester, each worth **150 points.** There will be 12 questions, but only **10 that need to be answered to get 100%.** Any points earned above 100% will be carried over to your cumulative total. The final exam (also 2 hours) is cumulative and is worth **300 points.** If your final exam score is higher (based on percentage) than **any of your midterm exam scores,** then it will replace the lower midterm exam scores. I.e., your final exam will count for more, replacing the lower midterm exam grades, and giving you a better overall class performance.***This will change the curve in a good way...meaning your standing in the class will be hurt if you slack off on the final*** **There will be no make-up exams.** If you miss an exam, for *any reason*, it will count as the dropped exam. The final exam is not optional and cannot be dropped.

There will be no quizzes. The online homework is worth **250 points.** Your final grade will be based on a maximum of **1000 points,** distributed as follows: 3 exams (150 points each), 1 Final Exam (300 points), Online Homework (250 points).
Letter Grade Assignment: Depending on class performance the Exams may be curved, **but never downward.** If necessary the class average of each exam will be curved upward to a 60% (the lowest B-). The cutoff for an A- will be 780 total points. The cutoff for a B- will be 600 points. The cut off for a C- will be 450 points.

Students with Disabilities

If you are a student with a disability and believe you will need accommodations for this class, it is your responsibility to contact Student Disability Services at (619) 594-6473. To avoid any delay in the receipt of your accommodations, you should contact Student Disability Services as soon as possible. Please note that accommodations are not retroactive, and that accommodations based upon disability cannot be provided until you have presented your instructor with an accommodation letter from Student Disability Services. Your cooperation is appreciated.

Academic Honesty

The University adheres to a strict policy regarding cheating and plagiarism. These activities will not be tolerated in this class. Become familiar with the policy (http://www.sa.sdsu.edu/srr/conduct1.html). Any cheating or plagiarism will result in failing this class and a disciplinary review by Student Affairs.

Examples of Plagiarism include but are not limited to:

- Using sources verbatim or paraphrasing without giving proper attribution (this can include phrases, sentences, paragraphs and/or pages of work)
- Copying and pasting work from an online or offline source directly and calling it your own
- Using information you find from an online or offline source without giving the author credit
- Replacing words or phrases from another source and inserting your own words or phrases
- Submitting a piece of work you did for one class to another class

If you have questions on what is plagiarism, please consult the policy (http://www.sa.sdsu.edu/srr/conduct1.html) and this helpful guide from the Library: (http://infodome.sdsu.edu/infolit/exploratorium/Standard_5/plagiarism.pdf)

Online Homework Instructions

Online homework for each chapter will be due the Friday after the corresponding chapter is finished in lecture.

Sapling Learning - Organic Chemistry Question Sets

Sapling's chemistry questions are delivered in a web browser to provide real-time grading, response-specific coaching, improvement of problem-solving skills, and detailed answer explanations. Dynamic answer modules enable one to interact with 3D models and figures, utilize drag-and-drop synthetic routes, and draw chemical structures - including stereochemistry and curved arrows. Altogether, Sapling is cheaper than a tutor, provides more value than a solutions manual, and goes beyond a mere assessment exercise to give a learning experience.

Students, we will be using Sapling Learning for our homework. To get started:

1. Go to http://saplinglearning.com and click "US Higher Ed" at the top right
2. a. If you already have a Sapling Learning account, log in and skip to step 3.
 b. If you have Facebook account, you can use it to quickly create a SaplingLearning account. Click the blue button with the Facebook symbol on it (just to the left of the username field). The form will auto-fill with information from your Facebook account (you may need to log into Facebook in the popup window first). Choose a password and timezone, accept the site policy agreement, and click "Create my new account". You can then skip to step 3.
 c. Otherwise, click "create account". Supply the requested information and click "Create my new account". Check your email (and spam filter) for a message from Sapling Learning and click on the link provided in that email.
3. Find your course in the list (listed by subject, term, and instructor) and click the link.
4. Select your payment options and follow the remaining instructions.
5. Work on the Sapling Learning training materials. The activities, videos, and information pages will familiarize you with the Sapling Learning user environment and serve as tutorials for efficiently drawing molecules, stereochemistry, etc. within the Sapling Learning answer modules. These training materials are already accessible in your Sapling Learning course.

- Once you have registered and enrolled, you can log in at any time to complete or review your homework assignments.
• During sign up - and throughout the term - if you have any technical problems or grading issues, send an email to support@saplinglearning.com explaining the issue. The Sapling support team is almost always more able (and faster) to resolve issues than your instructor and TAs.

• To optimize your Sapling Learning experience, please keep your internet browser and Flash player up to date and minimize the use of RAM-intensive programs/websites while using Sapling Learning.

Labs

The lab coordinator for this class is Dr. Byron Purse. You must attend your first scheduled lab or your spot may be forfeited. If you cannot make it please email Professor Purse immediately.

Extra help and tips for Success

Help is available in a variety of forms.

• Work with your classmates on difficult material.
• Talk to your laboratory TA.
• Get a tutor. The Chemistry office (GMCS 209) or I can also help you to find one.
• There will be a review session the Thursday before each exam at 5:00 PM.

10 Musts to get a good grade:

• Attend all lectures and labs.
• Read material in book and notes before lecture, prior knowledge will help you become engaged in lecture and better comprehend material.
• Write questions down, and attend office hours.
• Do assigned homework (worth more than an exam!).
• Discuss concepts with classmates, or study partner.
• Don’t fall behind!
• Try to see the big picture. Organic chemistry builds upon itself. Many of the topics within a chapter are just a slight variation of something you learned.
• Be curious. Always ask why? Curiosity makes a scientist tick.
• Focus on understanding concepts, not memorization.
• Actively read tests and notes... every few minutes you should try a problem.

You can’t be a proficient scientist without a basis of factual knowledge, meaning that a little memorization is an essential part of your education. That said, exams will be designed as much as possible to test your *comprehension* rather than focusing on rote memorization. Expect that some exam questions will include a small “twist” that will be very easy to handle if you have understood, but very hard if you have only memorized. This will be completely clear; I do not intentionally use trick questions. This is an upper division organic chemistry class, you will have to study hard!!!