CHEM 563: NUCLEIC ACID FUNCTION AND PROTEIN SYNTHESIS

DATES: FALL 2023 (AUGUST 21st THROUGH DECEMBER 11th, FINAL EXAM - DECEMBER 15th)

COURSE INFORMATION

Instructor: Professor John Love
Email: jlove@sdsu.edu
Class Meeting Days: Mondays and Wednesdays from August 21st through December 11th
Class Times: Face-To-Face from 1:00 PM until 1:50 PM in GMCS 314
Office Hours: Mondays and Wednesdays from 2:15 PM until 3:15 PM in CSL 339.
Final Exam: Friday December 15th from 1:00 pm until 3:00 pm in GMCS 314

Class Location: GMCS 314

Course attendance Policy: It is mandatory that students attend EVERY lecture.

Syllabus is Subject to Change: This syllabus and schedule are subject to change in the event of extenuating circumstances. If you are absent from class, it is your responsibility to check on Canvas announcements made while you were absent.

ABOUT YOUR INSTRUCTOR: Dr. Love is a Professor in the Chemistry and Biochemistry Department at SDSU. He is also the Director/Advisor for the Environmental Science major. Dr. Love runs a full-time research laboratory in which all students are welcome and include undergraduate, MS, and PhD students pursuing projects in the field of Protein Design. Currently, an ongoing research project is the engineering of novel proteins that are completely monomeric in the absence of metals yet form high affinity dimers in the presence of metals such as Zn$^{2+}$as well as Rare Earth Elements. In addition, Dr. Love and his students are engineering proteins that bind cellulose in order to generate bio-composite material that could possibly be used to replace much of the single-use petroleum-based plastic that is so pervasive in our world. The cellulose derives from various waste streams such as sugarcane bagasse, nutshells from the California almond industry, palm fronds, and other forms of waste cellulose. Dr. Love also has extensive experience using Nuclear Magnetic Residence (NMR) spectroscopy to elucidate the structure of a transcription factor protein bound to its cognate DNA sequence.

COURSE DESCRIPTION

Recent exciting developments in the use of DNA as a tool to fight disease include the successful development of effective mRNA vaccines against diseases such as Covid-19 and its many variants. Classically, DNA and RNA are responsible for the transmission of genetic information, but they have also been shown to fulfill a number of critical functions in eukaryotic and prokaryotic cells. This course will provide an overview of the structures and functions of nucleic acids and we will
also study many biochemical methods used in the study and production of nucleic acids including \textit{in vitro} selection, nucleic acids in medical applications, nucleic acid nanotechnology and the roles of nucleic acids in molecular biology. Students will also obtain experience in reading current literature about scientific findings associated with nucleic acids such as genome editing with the CRISPR-Cas9 system.

\textbf{From the SDSU Catalog:} DNA replication, RNA transcription, RNA processing, and protein translation, including chemical mechanisms of synthesis and cellular mechanisms of regulating gene expression; genomics, recombinant DNA, and DNA topology.

\textbf{COURSE LEARNING OBJECTIVES}

Following this course, students will be able to:

1. Describe the chemical make-up of nucleic acids in terms of elemental and molecular composition, as well as a range of nucleic acid functions.
2. To be able to explain in molecular detail how all living cells synthesize DNA and RNA polymers and how these lead to protein synthesis.
3. To recognize and explain how macromolecules such as DNA, RNA, and proteins interact with each other, and to be able to predict the outcomes of such interactions.
4. To recognize and explain how the structure of macromolecules relates to their function, and to be able to rationalize macromolecule biochemical function based upon structure.
5. To explain how the expression of genetic information is regulated at the molecular level.
6. To explain the theory behind important nucleic acid-based technologies utilized in biochemistry, biotechnology, and forensic research laboratories.
7. To discuss the correspondence of molecular abnormalities with cancer, aging, and genetic disease across all organisms.

\textbf{ENROLLMENT INFORMATION}

\textbf{PREREQUISITES}

Students absolutely must have completed either CHEM560 (General Biochemistry) or CHEM365 (Fundamentals of Biochemistry) or the equivalent at another university (one semester of upper-level biochemistry) prior to taking CHEM 563.

\textbf{COURSE MATERIALS}

\textbf{REQUIRED MATERIALS}

- \textbf{Required Textbook:} Voet, Voet, and Pratt: \textit{“Fundamentals of Biochemistry”, 5th Edition}, Wiley, 2016. (Most of you have used this same text and edition for CHEM 560.) Purchasing and owning this textbook is absolutely required. Everyone will be required to demonstrate that they own a good working version of the required textbook.
PDF files that contain PowerPoint slides for all lectures will be provided on the Canvas webpage for this course.

All classes are conducted live (face-to-face) in GMCS 314, yet attempts may be made to record lessons to the cloud for each class period.

Students will also be provided PDF files of newspaper, magazine, and scientific journal articles on the Canvas webpage for this course.

Regarding PowerPoints and your lecture notes: PDF files of the PowerPoint slides will be available for download from SDSU Canvas webpage for this course. Essentially all of the slides will be available as PDF files.

You are not responsible for knowing everything in the textbook. Unless noted otherwise, you are responsible for everything presented in the PowerPoint slides and for everything written on the whiteboard during lecture, as well as what is discussed/explained in lecture. There will definitely be additional material presented in lecture and written on the board that is not in the PowerPoints. Thus, attendance for every lecture is required!

RECOMMENDED OR OPTIONAL MATERIALS

- PDF files of associated material such as recent manuscript articles, or other forms of current literature such as newspaper articles will be provided to all students through the Canvas page for this course.

COURSE STRUCTURE

This course is only being offered face-to-face using traditional lecture delivery. In addition, potential collaborative group activities and individual assignments may also be assigned to students. This course is **NOT** an online course, and therefore all students must attend every class. Course information and content is housed in the Canvas (canvas.sdsu.edu) learning Management System (LMS) for CHEM 563.

COURSE REQUIREMENTS

Course Attendance Policy: Students are expected to attend **all** lectures. Grades are based on the following:

- **Examinations:** There will be a total of four exams, each worth 100 points. Therefore there are a total of 400 points possible for the entire course. The fourth exam will **not** be cumulative but will be given during the scheduled final exam period (Friday, December 15th from 1 PM to 3 PM).
- Exams will contain primarily multiple choice, but also possibly short answer questions.
- The multiple-choice questions on the exams **must** be answered on SCANTRON forms.
- All students are expected to supply and bring a SCANTRON form No. 882-E to each exam.
- The use of any electronic devices is not permitted during the exams, unless approved beforehand by the instructor.
Examples of past exam questions from previous years will be provided on the Canvas webpage for the course.

The lecture schedule on the next page is approximate and subject to change.

However, the dates for the four exams are fixed and will not change.

Grading scale:

- 360-400 points (90-100%): A, A-
- 320-359 points (80-89%): B+, B, B-
- 280-319 points (70-79%): C+, C, C-
- 240-279 points (60-69%): D
- <240 points (<60%): F

COURSE ASSESSMENTS AND SCORING

<table>
<thead>
<tr>
<th>GRADE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(A-)</td>
<td>Excellent = 90-100%</td>
</tr>
<tr>
<td>B(+-)</td>
<td>Above Average = 80-89%</td>
</tr>
<tr>
<td>C(+-)</td>
<td>Average = 70-79%</td>
</tr>
<tr>
<td>D</td>
<td>Marginal = 60-69%</td>
</tr>
<tr>
<td>F</td>
<td>Unsatisfactory = 59% or below</td>
</tr>
<tr>
<td>I</td>
<td>Incomplete = Did not complete</td>
</tr>
</tbody>
</table>

LATE EXAM COMPLETION POLICY

Exams are considered late if they are not taken on the scheduled date and time as shown on the course schedule below. A makeup for a missed exam must be scheduled with the instructor PRIOR to the actual exam date. Makeup exams must be taken within 24 hours of the exam date and time and may incur a 25% deduction in points. You must contact the instructor in advance if you are unable to attend an exam.

OVERALL COURSE OUTLINE

<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aug. 21</td>
<td>Nucleotides, Nucleic Acid Structure</td>
</tr>
<tr>
<td>2</td>
<td>Aug. 23</td>
<td>No live class, please review the following videos Khan Academy YouTube</td>
</tr>
<tr>
<td>3</td>
<td>Aug. 28</td>
<td>Chemical properties of DNA and RNA; RNA enzymes and the RNA World; the size of DNA molecules.</td>
</tr>
<tr>
<td>4</td>
<td>Aug. 30</td>
<td>The Central Dogma; DNA/Genome sequencing, Molecular Evolution and derivation of phylogenies</td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
<td>References</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sept. 4</td>
<td>Holiday – Labor Day, Campus closed, no class.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sept. 6</td>
<td>Prokaryotic DNA replication.</td>
</tr>
<tr>
<td>6</td>
<td>Sept. 11</td>
<td>Restriction Enzymes; Gel Electrophoresis of nucleic acids; Recombinant DNA and PCR; practical applications</td>
</tr>
<tr>
<td>7</td>
<td>Sept. 13</td>
<td>Nucleic acid purification, fractionation, geometry of DNA</td>
</tr>
<tr>
<td>8</td>
<td>Sept. 18</td>
<td>DNA Supercoiling and Topoisomerases</td>
</tr>
<tr>
<td>9</td>
<td>Sept. 20</td>
<td>DNA Supercoiling, Topoisomerases; Transcription, Bacterial RNA polymerase, Promoters</td>
</tr>
<tr>
<td>10</td>
<td>Sept. 25</td>
<td>FIRST MID-TERM EXAMINATION</td>
</tr>
<tr>
<td>11</td>
<td>Sept. 27</td>
<td>Transcription: Bacterial RNA polymerase; Promoters, Initiation</td>
</tr>
<tr>
<td>12</td>
<td>Oct. 2</td>
<td>Transcription elongation and termination; Eukaryotic RNA polymerases</td>
</tr>
<tr>
<td>13</td>
<td>Oct. 4</td>
<td>Eukaryotic promoters; Eukaryotic General Transcription Factors and Preinitiation Complex Assembly</td>
</tr>
<tr>
<td>14</td>
<td>Oct. 9</td>
<td>Post-transcriptional RNA processing: eukaryotic mRNA capping, poly-adenylation, and mRNA splicing</td>
</tr>
<tr>
<td>15</td>
<td>Oct. 11</td>
<td>mRNA splicing; snRNPs</td>
</tr>
<tr>
<td>16</td>
<td>Oct. 16</td>
<td>Alternative Splicing; RNA editing; Transport of RNA to the cytoplasm</td>
</tr>
<tr>
<td>17</td>
<td>Oct. 18</td>
<td>rRNA processing; Group II and Group I self-splicing introns; tRNA processing</td>
</tr>
<tr>
<td>18</td>
<td>Oct. 23</td>
<td>SECOND MID-TERM EXAMINATION</td>
</tr>
<tr>
<td>19</td>
<td>Oct. 25</td>
<td>Translation: the genetic code; tRNAs and aminoacylation</td>
</tr>
<tr>
<td>20</td>
<td>Oct. 30</td>
<td>Translation: Codon-anticodon interactions; Wobble; Ribosomes</td>
</tr>
<tr>
<td>21</td>
<td>Nov. 1</td>
<td>Polypeptide chain initiation, elongation, and termination.</td>
</tr>
<tr>
<td>22</td>
<td>Nov. 6</td>
<td>Protein synthesis inhibitors (antibiotics); posttranslational processing</td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
<td>Notes</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Nov. 8</td>
<td>Regulation of prokaryotic gene expression; the lac operon and its repression and activation; helix-turn-helix DNA-binding motif; Riboswitches</td>
<td>This Chapter 28 pp 1023-1028 Chapter 24 pp 851-852; 1030-1032</td>
</tr>
<tr>
<td>Nov. 13</td>
<td>THIRD MID-TERM EXAMINATION</td>
<td></td>
</tr>
<tr>
<td>Nov. 15</td>
<td>Regulation of Eukaryotic Gene Expression: Activators and Repressors of Transcription; DNA binding domains in eukaryotic transcription factors</td>
<td>Chapter 28 pp 1043-1049 Chapter 24 pp 854-857</td>
</tr>
<tr>
<td>Nov. 20</td>
<td>Eukaryotic chromosomes and chromatin structure; histones; nucleosomes</td>
<td>Chapter 24 pp 858-863</td>
</tr>
<tr>
<td>Nov. 22</td>
<td>Role of Chromatin in eukaryotic gene regulation; RNA interference; Genomics</td>
<td>Chapter 28 pp 1032-1043 1049-1055; 1013-1023</td>
</tr>
<tr>
<td>Nov. 27</td>
<td>Cell Cycle, Cancer and Apoptosis (programmed cell death)</td>
<td></td>
</tr>
<tr>
<td>Nov. 29</td>
<td>Thanksgiving Holiday Campus closed, no class.</td>
<td>Chapter 28 pp 1059-1068</td>
</tr>
<tr>
<td>Dec. 4</td>
<td>Eukaryotic DNA Replication</td>
<td>Chapter 25 pp 884-891</td>
</tr>
<tr>
<td>Dec. 6</td>
<td>Retroviruses; Reverse Transcriptase; Telomerase;</td>
<td>Chapter 25 pp 884-891</td>
</tr>
<tr>
<td>Dec. 11</td>
<td>Aging DNA damage and repair; DNA recombination Antibodies and DNA rearrangements for antibody production</td>
<td>Chapter 25 pp 891-904 Chapter 7, pp 208-213 Chapter 28 pp 1056-1059</td>
</tr>
<tr>
<td>Dec. 15</td>
<td>FOURTH EXAM – Friday, Dec. 16, 1:00-3:00, GMCS 314</td>
<td>Covers lecture material from after Third Exam</td>
</tr>
</tbody>
</table>

STUDENT SUPPORT

WRITING SUPPORT

For help with improving your writing ability, the staff at the SDSU Writing Center is available online. Most students find it helpful to use technology tools to support the writing process. The following resources are provided as needed.

- Use a free Chrome browser plug-in such as Grammarly or MS Office tools to proofread and provide edits in real time in your own copy of MS Office.
- Review APA formatting:
 - APA Manual
 - Purdue University's OWL
 - APASTyle.org Quick Answers-Formatting
 - PC: Set up and use APA Formatting video or LibrarianEnumerations Blog
 - Mac: Set up and use APA Formatting video
 - Citation Machine tool for creating citations
TECHNICAL SUPPORT FOR CANVAS

- https://its.sdsu.edu/canvas/

EXPECTATIONS

Students are expected to take all exams on the schedule exam dates, and participate fully in class activities and discussions.

The instructor will respond to student email within 24-72 hours and will provide grades for assignments within 1-2 weeks of the due date.

NETIQUETTE

Netiquette is online etiquette and is applicable to all course communications. It is important that all students be aware of proper behavior and show respect to one another.

Netiquette guidelines are common sense and ask all to use appropriate language for an educational environment:

- Use complete sentences
- Use proper spelling and grammar
- Avoid slang and uncommon abbreviations
- Avoid obscene or threatening language

The University values diversity and encourages discourse. Be respectful of differences while engaging in discussions. Consult SDSU’s netiquette guidelines for more information.

UNIVERSITY POLICIES

ACADEMIC HONESTY

The University adheres to a strict policy regarding cheating and plagiarism. These activities will not be tolerated. Become familiar with the policy and what constitutes plagiarism (http://studentaffairs.sdsu.edu/srr/cheating-plagiarism.html). Any cheating or plagiarism will result in failing this class and a disciplinary review by the University. These actions may lead to probation, suspension, or expulsion.

Examples of Academic Dishonesty include but are not limited to:

- copying, in part or in whole, from another's test or other examination;
- obtaining copies of a test, an examination, or other course material without the permission of the instructor;
- collaborating with another or others in work to be presented without the permission of the instructor;
• falsifying records, laboratory work, or other course data;
• submitting work previously presented in another course, if contrary to the rules of the course;
• altering or interfering with grading procedures;
• assisting another student in any of the above;
• using sources verbatim or paraphrasing without giving proper attribution (this can include phrases, sentences, paragraphs and/or pages of work);
• copying and pasting work from an online or offline source directly and calling it your own;
• using information you find from an online or offline source without giving the author credit;
• replacing words or phrases from another source and inserting your own words or phrases.

The California State University system requires instructors to report all instances of academic misconduct to the Center for Student Rights and Responsibilities. Academic dishonesty will result in disciplinary review by the University and may lead to probation, suspension, or expulsion. Instructors may also, at their discretion, penalize student grades on any assignment or assessment discovered to have been produced in an academically dishonest manner.

ACCESSIBILITY

If you are a student with a disability and believe you will need accommodations for this class, it is your responsibility to contact Student Ability Success Center at (619) 594-6473. You can also learn more about the services provided by visiting the Student Ability Success Center website.

To avoid any delay in the receipt of your accommodations, you should contact Student Ability Success Center as soon as possible. Please note that accommodations are not retroactive, and that accommodations based upon disability cannot be provided until you have presented your instructor with an accommodation letter from Student Ability Success Center. Your cooperation is appreciated.

STUDENT SUPPORT SERVICES:

A complete list of all academic support services is available on the Academic Success section of the SDSU Student Affairs website.

CLASSROOM CONDUCT STANDARDS

SDSU students are expected to abide by the terms of the Student Conduct Code in classrooms and other instructional settings. Prohibited conduct includes:

• Willful, material and substantial disruption or obstruction of a University-related activity, or any on-campus activity.
• Participating in an activity that substantially and materially disrupts the normal operations of the University or infringes on the rights of members of the University community.
• Unauthorized recording, dissemination, or publication (including on websites or social media) of lectures or other course materials.
• Conduct that threatens or endangers the health or safety of any person within or related to the University community, including
 1. physical abuse, threats, intimidation, or harassment.
 2. sexual misconduct.

Violation of these standards will result in referral to appropriate campus authorities.

MEDICAL-RELATED ABSENCES

Students are instructed to contact their professor/instructor in the event they need to miss class, etc. due to an illness, injury or emergency. All decisions about the impact of an absence, as well as any arrangements for making up work, rest with the instructors. Student Health Services (SHS) does not provide medical excuses for short-term absences due to illness or injury. When a medical-related absence persists beyond five days, SHS will work with students to provide appropriate documentation. When a student is hospitalized or has a serious, ongoing illness or injury, SHS will, at the student's request and with the student’s consent, communicate with the student’s instructors via the Vice President for Student Affairs and may communicate with the student’s Assistant Dean and/or the Student Ability Success Center.

SDSU ECONOMIC CRISIS RESPONSE TEAM

If you or a friend are experiencing food or housing insecurity, or any unforeseen financial crisis, visit sdsu.edu/ecrt, email ecrt@sdsu.edu, or walk-in to Well-being & Health Promotion on the 3rd floor of Calpulli Center.

COPYRIGHT POLICY

SDSU respects the intellectual property of others and we ask our faculty & students to do the same. It is best to assume that any material (e.g., graphic, html coding, text, video, or sound) on the Web is copyrighted unless specific permission is given to copy it under a Creative Commons License. For more information about the use of copy written material in education, consult the TEACH Act and Copyright Fair Use Guidelines. Whenever possible, you should attribute the original author of any work used under these provisions.

NETIQUETTE AND COMMUNICATION GUIDELINES

Consult SDSU’s netiquette guidelines for information on appropriate communication.

NON-DISCRIMINATION POLICY
SDSU is committed to providing a safe and welcoming campus environment for all students, faculty and staff. The CSU has affirmed its commitment to ‘protecting access, affordability, intellectual freedom, inclusivity, and diversity for all students, including supporting DACA students.’ Discrimination, harassment, or retaliation against students, faculty, and staff on the basis of race, religion, gender, sexuality, disability, nationality, immigration status and other categories of identity is prohibited. If you have concerns about your status at the university, visit the Student Affairs site for information or contact the Dean of Students or the Assistant Dean for Student Affairs in your College.

RELIGIOUS OBSERVANCES

According to the University Policy File, students should notify the instructors of affected courses of planned absences for religious observances by the end of the second week of classes.

STANDARDS FOR STUDENT CONDUCT

The university is committed to maintaining a safe and healthy living and learning environment for students, faculty, and staff. Each member of the campus community should choose behaviors that contribute toward this end. Refer to the Center for Student Rights and Responsibilities to learn more.

STUDENT PRIVACY / FERPA / INTELLECTUAL PROPERTY

SDSU complies with the federal Family Educational Rights and Privacy Act. Grades, personal identification and any other records will not be released to others without your express written permission. Refer to the Office of the Registrar for detailed information on student privacy.

The Family Educational Rights and Privacy Act (FERPA) mandates the protection of student information, including contact information, grades, and graded assignments. Your instructor may use [Canvas / Blackboard] to communicate with you, and will not post grades or leave graded assignments in public places. Students will be notified at the time of an assignment if copies of student work will be retained beyond the end of the term or used as examples for future students or the wider public. Students maintain intellectual property rights to work products they create as part of this course unless they are formally notified otherwise.

Land Acknowledgement

We stand upon a land that carries the footsteps of millennia of Kumeyaay people. They are a people whose traditional lifeways intertwine with a worldview of earth and sky in a community of living beings. This land is part of a relationship that has nourished, healed, protected and embraced the Kumeyaay people to the present day. It is part of a world view founded in the harmony of the cycles of the sky and balance in the forces of life. For the Kumeyaay, red and
black represent the balance of those forces that provide for harmony within our bodies as well as the world around us.

As students, faculty, staff and alumni of San Diego State University we acknowledge this legacy from the Kumeyaay. We promote this balance in life as we pursue our goals of knowledge and understanding. We find inspiration in the Kumeyaay spirit to open our minds and hearts. It is the legacy of the red and black. It is the land of the Kumeyaay. Eyay e’Hunn My heart is good.