Chemistry 712: Chemical Kinetics Fall 2019 Tues & Thurs 5:00 – 6:15 PS-140

Fall 2019, Tues	& Thurs 5:00 – 6:15, PS-140
Instructor	Dr. David Pullman, CSL-301, 619-594-5573, dpullman@sdsu.edu
Office Hours	Tues, Wed, Thurs 1:30–2:30
Textbook	A reader available from the SDSU bookstore containg the first 7 chapters of: <i>Chemical Kinetics and Dynamics</i> , 2nd Ed., J.I. Steinfeld, J.S. Francisco, and W.L Hase
Prerequisites	Chemistry 410B or equivalent
Catalog Description	Theory of rate processes; applications of kinetics to the study of reaction mechanisms.
Course Overview	After an initial treatment of the basic phenomenological view of kinetics, we will cover classical analyses of reaction mechanisms (steady-state approximation, pre-equilibria, etc), transition-state theory, classical and quantum estimation of rate constants, and various modern experimental methods of determining reaction rates and mechanisms. Reactions taking place in the gas phase, liquid phase, and on surfaces (including nanoparticles) will be discussed, and as much as possible, examples will be taken from all areas of chemistry, including interdisciplinary areas such as atmospheric chemistry, combustion, and catalysis. The course will be largely based on the textbook by SFH, but will also be augmented by additional material as needed. Chemical kinetics simulation software as well as general purpose software, such as Excel, Maple, and Igor will be used when appropriate to help solve problems. We will also use the electronic structure program, Gaussian, to calculate a reaction profile for a simple reaction.
Course Structure	The lectures will roughly follow the text, with additional examples drawn from the chemical literature as well as from research in SDSU's Chem&Biochem Department. Some lectures will be devoted to tutorials in the use of computer software; these lectures will be held in the departmental computer lab, GMCS-245 (Note: you do <i>not</i> need to purchase any software since it will be available on the departmental computers). During the last few weeks of the semester, each student will give a ~20 minute presentation discussing a literature article they have selected.
Grading	 Exam I 22% (tentatively the week of September 23) Exam II 22% (tentatively the week of October 28) Final Exam 31% (Tuesday December 17, 2019, 3:30 – 5:30) Final Project 25% (presented in weeks of Dec. 2 and Dec. 9) No makeup exams will be given. The grading scale is: A 80-100% B 65-80% C 50%-65% +/- grading will be used The final project consists of selecting (in consultation with the instructor) a kinetics paper from the research literature and preparing and presenting a ~25 minute talk to the class in which you discuss and critically evaluate the article 80% of your grade for the

paper from the research literature and preparing and presenting a ~ 25 minute talk to the class in which you discuss and critically evaluate the article. 80% of your grade for the project will be based on your presentation, while 20% will be based on your participation in asking questions during the other student presentations.

Topics	 We will cover topics from all or parts of the following chapters (and perhaps others, as needed) in the text: Chap 1 Basic Concepts of Kinetics Chap 2 Complex Reactions Chap 3 Kinetic Measurements Chap 4 Reactions in Solutions Chap 5 Catalysis (including enzyme catalysis) Chap 6 The Transition from the Macroscopic to the Microscopic Level Chap 7 Potential Energy Surfaces Chap 10 Statistical Approach to Reaction Dynamics: Transition State Theory
Student Learning Outcomes	 Upon completing Chem 712, students will be able to: Understand and articulate the basic principles of Chemical Kinetics Describe the fundamental chemical and physical properties that determine chemical reaction rates Carry out calculations on reaction rates using the rate law Estimate elementary reaction rate constants based on collision theory, statistical theories, and transition state theory Perform kinetics calculations and simulations using Excel, Maple, Gaussian, and dedicated kinetics simulation software Evaluate the literature regarding kinetic measurements of complex reaction systems
Problem Sets	There will usually be one problem set per chapter. Problem sets will <i>not</i> be graded; you do not need to hand them in. You can download them from the Blackboard website for the class. As in any technical class, doing the problem sets is of the utmost importance to learning the material and doing well on exams.
Add/Drop Procedure	The add/drop deadline is Sept. 9, 2019 at 7:59 PM. For details, see http://arweb.sdsu.edu/es/registrar/schedule_adjustment.html
Students with Disabilities	If you are a student with a disability and believe you will need accommodations for this class, it is your responsibility to contact Student Ability Success Center at (619) 594-6473. To avoid any delay in the receipt of your accommodations, you should contact Student Ability Success Center as soon as possible. Please note that accommodations are not retroactive, and that I cannot provide accommodations based upon disability until I have received an accommodation letter from Student Ability Success Center. Your cooperation is appreciated.