Andrew L. Cooksy

Professor, Physical
Associate Director, Computational Sciences Research Center

office: CSL 310
phone: 619-594-5571
Cooksy photo

Curriculum Vitae

  • B.A., chemistry and physics, Harvard College, 1984
  • Ph.D., chemistry, University of California, Berkeley, 1990
  • Postdoctoral Research Associate, Harvard-Smithsonian Center for Astrophysics and Harvard University Department of Chemistry, 1990-1993
  • University of Mississippi Department of Chemistry and Biochemistry, 1993-1999
  • San Diego State University Department of Chemistry and Biochemistry, 1999-
  • Northrop-Grumman Excellence in Teaching Award, 2010
  • Senate Excellence in Teaching Award, College of Sciences, 2011

Recent Courses

  • Chem 200: General Chemistry I
  • Chem 410: Physical Chemistry
  • Chem 417: Physical Chemistry Lab
  • Chem 713: Quantum Chemistry

Research Interests

[C5H7 ts]

Pentadienyl/cyclopentenyl transition state.
(image by C. Cheng, instr. Spring 2006 CS689)

Reactive intermediates in combustion, interstellar chemistry, chemical synthesis, and biochemistry; investigated by laser spectroscopy and spectroscopic theory, and by computational quantum mechanics.

Molecular free radicals are crucial to the chemistry of combustion, the upper atmosphere, polymerization, and interstellar molecular clouds, and also figure in many biochemical electron transfer processes. We are interested in the physical and chemical properties of these molecules, particularly those containing conjugated π-electron systems, such as HC3O and C4H and the biochemical quinones, because the delocalized orbitals can confer surprising dynamic and reactive properties to these systems.

High Resolution Spectroscopy of Free Radicals

In our experimental work, we search for new spectra of small hydrocarbon or other first-row element free radicals in the visible or infrared regions of the spectrum in order to characterize these dynamic properties. Our mid-infrared diode laser spectrometer operates between 1800 and 2400 cm-1, and uses a 2-meter electric discharge cell as the sample chamber. With this system we search for strong stretching transitions in the free radicals, and then probe the isomerization coordinate by examining hot band and combination band spectra to obtain measurements at high resolution of the interesting vibrational dynamics of these molecules. These studies were originally supported by one of the first NSF CAREER awards, and is currently funded by the Army Research Office. Postdoc Erich Wolf is heading up this project, assisted by undergraduates Alex Colla, Thuy-Tien Pham, and Michael Baudé.

lab photo
lab photo

Computational Studies of Free Radical Structures and Dynamics

We are engaged in concurrent ab initio computational studies of these and larger molecules to investigate the relative stability of the competing structures, and their effect on the chemistry. These ab initio calculations guide the laboratory measurements of the energy level structure, geometry, and chemistry of these molecules, as well as offering information for the kinetic models of the highly complex chemical environments found in combustion and interstellar space.


Previous work in our group along these lines included studies of the mechanisms behind the elctrocyclic ring-closure of cyclopentadienyl radical (C5H5) and the vibrational dynamics of cyclooctatetraenyl (C8H7), including its effective isomerization from one structure to another under specific vibrational excitations. We are presently applying similar approaches to problems in computational biochemistry, elucidating the reaction mechanisms underlying vitamin E regeneration and enzyme-mediated metabolism of small compounds.

Recognizing the need for a general, easily mastered way to study these complex vibrational dynamics, we've recently published a protocol for the integration of the vibrational Schrodinger equation on an arbitrary potential energy surface. This work formed the doctoral work of Dong Xu, one of SDSU's first two PhD students in Computational Sciences, and now an assistant professor at Boise State University. PhD candidate Peter Zajac is extending that work. Sabbatical visitor Dra. Guadalupe Moreno has joined our group for 2011, to carry out electronic structure studies of high-spin radicals, which we can then analyze by our methods.


Current work with Prof. Doug Grotjahn strives to understand the activity of organometallic catalysts synthesized in his lab. To model the transformation of a π-complexed alkyne into vinylidene on one of these catalysts, we mapped the reaction surface of the complex in two dimensions, finding an unexpected parallel in our previous work on multiple minima on vibrational surfaces of free radicals. We are in the midst of an exhaustive analysis of a system that catalyzes the formation of aldehyde from alkyne and water, finding that Grotjahn's signature heterocyclic ligands play a major role in the dynamics by providing a basic chemical environment to stabilize the relocation of hydrogen atoms. Undergraduate Amy Arita has been hard at work on this project, which is funded by the National Science Foundation.

Bridging Experiment and Theory

NCO molecule

The complex interactions among the spin and orbital magnetic fields of unpaired electrons and the rotational, vibrational, and nuclear angular momenta in these molecules also means that we sometimes work at the limits of present spectroscopic theory. Work from a sabbatical with Prof. John M. Brown at Oxford University involved the first combined analysis of the lowest vibrational bending states in the NCO radical. NCO is a prototype example of the Renner-Teller effect, in this case the strong interaction between the two electronic states formed when the Π state symmetry of the linear is broken upon bending. To complete this analysis, we used third-order perturbation theory to derive additional contributions to the effective Hamiltonian, which is still growing after 70 years.

We gratefully acknowledge funding for past and current work from the Army Research Office, the National Science Foundation, the Petroleum Research Fund of the American Chemical Society, the Exxon Education Foundation, and the San Diego Foundation.


[textbook cover]

Recent Publications

  1. "Examination of Oxygen Atom Transfer Reactivity of Heteroscorpionate Dioxo-Mo(VI) Complexes: Geometric Isomers, Solvent Effect, Intermediates, and Catalytic Oxidation,"
    Ba L. Tran, Amy Arita, Andrew L. Cooksy and Carl J. Carrano,
    Inorg. Chim. Acta (in press) (2016). (doi:10.1016/j.ica.2016.03.035.)
  2. "Highly Phosphorescent Crystals of Square Planar Pt (R-terpy) Complexes with Chiral Organometallic Linkers : Homochiral versus Heterochiral Arrangements, Induced Circular Dichroism and TD-DFT Calculations,"
    Hugo Sesolis, Julien Dubarle-Offner, Carmen K. M. Chan, Emmanuel Puig, Geoffrey Gontard, Pierre Winter, Andrew L. Cooksy, Vivian W.W. Yam, and Hani Amouri,
    Chem. Eur. J. (in press) (2016).
  3. "Vibrationally Excited C3H and C4H,"
    Andrew L. Cooksy, C. A. Gottlieb, T. C. Killian, P. Thaddeus, Oscar Martinez, Jr., Kyle N. Crabtree, and M. C. McCarthy,
    Astrophys. J. Supp. Ser. 216 (2015). (doi: 10.1088/0067-0049/216/2/30.)
  4. "Oxygen-Chlorine Interactions in the Transition State of Asymmetric Michael Additions of Carbonyl Compounds to β-Nitrostyrene,"
    José A. Romero, Angélica Navarrate, Felipe A. Servín, Domingo Madrigal, Andrew L. Cooksy, Gerardo Aguirre, Daniel Chávez, and Ratnasamy Somanathan,
    Tet. Asym. 25, 997-1001 (2014). (doi: 10.1016/j.tetasy.2014.05.002.)
  5. "Encapsulation of a Metal Complex within a Self-Assembled Nanocage: Synergy Effects, Molecular Structures and DFT Calculations,"
    Christophe Desmarets, Geoffrey Gontard, Andrew Cooksy, Marie-Noelle Rager, and Hani Haniel Amouri,
    Inorg. Chem. 53, 4287-4294 (2014). (doi: 10.1021/ic402539x.)
  6. "How Do Proximal Hydroxy or Methoxy Groups on the Bidentate Ligand Affect [(2,2;6,2"-Terpyridine)Ru-(N,N)X] Water-Oxidation Catalysts? Synthesis, Characterization, and Reactivity at Acidic and Near-Neutral pH,"
    David C. Marelius, Salome Bhagan, David J. Charboneau, Kristine M. Schroeder, Jayneil M. Kamdar, Amanda R. McGettigan, Benjamin J. Freeman, Curtis E. Moore, Arnold L. Rheingold, Andrew L. Cooksy, Diane K. Smith, Jared J. Paul, Elizabeth T. Papish, and Douglas B. Grotjahn,
    Eur. J. Inorg. Chem. 2014, 676-689 (2014). (doi:10.1002/ejic.201300826.)
  7. "Electrochemical Evidence for Intermolecular Proton-Coupled Electron Transfer through a H-bond Complex in a p-Phenylenediamine-based Urea. Introduction of the "Wedge Scheme'' as a Useful Means to Describe Reactions of this Type,"
    Laurie Clare, An Pham, Francine Magdaleno, Jacqueline Acosta, Jessica Woods, Andrew Cooksy, and Diane Smith,
    J. Am. Chem. Soc. 135, 18930-18941 (2013). (doi: 10.1021/ja410061x.)
  8. "Computational Study of the Extensive Role of Heterocyclic Ligands in Acetylene Hydration by a Bifunctional Organometallic Catalyst,"
    Amy J. Arita, Janet Cantada, Douglas B. Grotjahn, and Andrew L. Cooksy,
    Organometallics 32, 6867-6870 (2013). (doi: 10.1021/om400445n.)
  9. "Π-Bonded Dithiolene Complexes: Synthesis, Molecular Structures, Electrochemical Behavior, and Density Functional Theory Calculations,"
    Aurelie Damas, Lise-Marie Chamoreau, Andrew L. Cooksy, Anny Jutand, and Hani Amouri,
    Inorg. Chem. 52, 1409-1417 (2013). (doi: 10.1021/ic302128q.)
  10. "Density Functional Calculations on Rhodium(III)-Cp* Catalyzed Asymmetric Transfer Hydrogenation of Acetophenone Using Monosulfonamide Ligands Derived from (1R,2R)-Diaminocyclohexane,"
    Domingo Madrigal, Ratnasamy Somanathan, and Andrew L. Cooksy,
    Comp. Theor. Chem. 999, 105-108 (2012). (doi:j.comptc.2012.08.021.)
  11. "Enantiomerically Pure Planar Chiral Cp*Ru Complexes: Synthesis, Molecular Structures, DFT and Coordination Properties,"
    Julien Dubarle-Offner, M. Rosa Axet, Lise Marie Chamoreau, Hani Amouri, and Andrew L. Cooksy,
    Organometallics 31, 4429-4434 (2012). (doi:10.1021/om300210c.)
  12. "Novel, Unifying Mechanism for Amphotericin B and Other Polyene Drugs: Electron Affinity, Radicals, Electron Transfer, Autoxidation, Toxicity, and Antifungal Action,"
    P. I. Kovacic and A. L. Cooksy,
    Med. Chem. Commun. 3, 274-280 (2012). (doi: 10.1039/c2md00267a.)

M.S. Theses and Ph.D. Dissertations

  1. Peter Zajac, Ph.D. 2013. Globally Accessible Finite Element Method based Web-Solver for the Vibrational Schodinger Equation and its Application to HC3O Carbon Chain Free Radical, ZnCl2+ and Hydroxyacetaldehyde Vibrational Dynamics in Polyatomic Molecules and Free Radicals.
  2. Dong Xu, Ph.D. 2007. FEMvib, an Ab Initio Multi-Dimensional Solver for Probing Vibrational Dynamics in Polyatomic Molecules and Free Radicals.
  3. Christopher D. Uranga, M.S. 2007. Characterization of Spectrometers for Infrared Spectroscopy of Free Radicals.
  4. Raymond L. Lui, M.S. 2005. Computational Study of Aqueous Reactions in Vitamin E Regeneration.
  5. Christopher Hinton, M.S. 2004. Computational Study of Carbon Radicals: C9H9 and HCnO.
  6. Roger Wong, M.S. 2004. Construction and Characterization of an Infrared Laser Spectrometer for Free Radicals.
  7. Dong Xu, M.S. 2003. Ab Initio Study of The Torsional Motion in Tolane
  8. Claudia L. Parker, Ph.D. 2000. Ab Initio and Spectroscopic Examination of Butadienyl Free Radicals.
  9. Haibo Wang, M.S. 1996. Ab Initio Calculations and Spectroscopy of Free Radicals.

Download Adobe Reader

K-12 Outreach Programs Full Publications List NSF bio (PDF)